長編連載[機械学習・進化計算による株式取引最適化] No.06-02 DQNによる学習 このプログラムの目的このプログラムはDQN(Deep Q-Learning)と呼ばれる強化学習によって,前項で作成したシミュレーション環境を学習することにあります.work_share├06_sampling_dqn_learning ├D... 2024.05.25長編連載
長編連載[機械学習・進化計算による株式取引最適化] No.06-01 市場シミュレーター環境の作成 このプログラムの目的stock_env.pyの目的は,作成したデータセットとネットワークのやり取りを,強化学習がやり取りしやすい形の「環境」で表現することです.このプログラムはNo.02章といくつかの相違点があります.関数を減らし,環境の呼... 2024.05.25長編連載
長編連載[機械学習・進化計算による株式取引最適化] No.05-01 予測器の作成 このプログラムの目的1~n日後の株価を予測する予測器を作成することです.n個の予測器が生成.手法はLightGBMパラメータチューニングはOptunawork_share├05_lightGBM_predict ├Dockerfile ├d... 2024.05.25長編連載
長編連載[機械学習・進化計算による株式取引最適化] No.04-06 学習データセットの作成 このプログラムの目的この章で作成してきたデータをまとめて,学習に利用しやすい形式に直すことです.銘柄ごとのデータを縦方向に結合します.また,時系列を扱うにあたり,-n時間までの過去の特徴量も学習データとして追加します.work_share├... 2024.05.25長編連載
長編連載[機械学習・進化計算による株式取引最適化] No.04 データセットの作成 本章の目的前回のデータセットよりもより多くの特徴量を持つデータセットを作成することです.ディレクトリ・ファイル構造work_share├04_get_stock_price_ver2 ├Dockerfile ├docker-compose.... 2024.05.25長編連載
長編連載[機械学習・進化計算による株式取引最適化] No.03-04 実行と結果 このプログラムの目的このプログラムはdqn.pyを呼び出し,強化学習を開始させることを目的とします.また,手法・環境のパラメータやデータセットのパスなどをここで指定します.work_share├02_get_stock_price└03_d... 2024.05.25長編連載